AutoBench: Finding Workloads That You Need
Using Pluggable Hybrid Analyses

Yudi Zheng*, Andrea Rosa*, Luca Salucci®, Yao Lif, Haiyang Sun*,
Lubomir Bulej*, Lydia Y. Chen?, Zhengwei Qif, and Walter Binder*
*Faculty of Informatics, Universita della Svizzera italiana, Lugano, Switzerland
Email: {yudi.zheng, andrea.rosa, luca.salucci, haiyang.sun, lubomir.bulej, walter.binder} @usi.ch
TShanghai Jiao Tong University, Shanghai, China
Email: {lastland, qizhwei}@sjtu.edu.cn
Cloud Server Technologies Group, IBM Research Lab Zurich, Riischlikon, Switzerland
Email: yic@zurich.ibm.com

Abstract—Researchers often rely on benchmarks to demon-
strate feasibility or efficiency of their contributions. However,
finding the right benchmark suite can be a daunting task—
existing benchmark suites may be outdated, known to be flawed,
or simply irrelevant for the proposed approach. Creating a proper
benchmark suite is challenging, extremely time consuming, and
also—unless it becomes widely popular—a thankless endeavor.
In this paper, we introduce a novel approach to help researchers
find relevant workloads for their experimental evaluation needs.
Our approach relies on the huge number of open-source projects
available in public repositories, and on unit testing having become
best practice in software development. Using a repository crawler
employing pluggable static and dynamic analyses for filtering and
workload characterization, we allow users to automatically find
projects with relevant workloads. Preliminary results presented
here show that unit tests can provide a viable source of workloads,
and that the combination of static and dynamic analyses improves
the ability to identify relevant workloads that can serve as the
basis for custom benchmark suites.

Keywords—Benchmarks; hybrid analysis; unit testing

I. INTRODUCTION

Researchers often rely on experimental evaluation to support
their claims and contributions. Experimental evaluation is
difficult, as illustrated by the collection of evaluation anti-
patterns found in the Evaluate Collaboratory'. A properly
designed and executed evaluation needs to consider many
aspects related to context, workloads, metrics, and analyses.
Here, we focus on the workloads, one of the crucial parts of
a meaningful experimental evaluation. Traditionally, specific
benchmarks are employed, which have been accepted as
representative workloads by a research community. However,
for many evaluation needs, proper benchmarks are missing [1].

Creating a benchmark suite that aspires to be generally
accepted by a research community requires significant effort,
both in finding workload candidates and showing that they are
good representatives, as well as in solving non-trivial technical
challenges associated with creating an easy-to-use “product”
for others to use. The design challenges are well demonstrated
in the case of DaCapo [2] and ScalaBench [3]. The problem
of maintaining a benchmark suite is clearly demonstrated by

Thttp://evaluate.inf.usi.ch/anti- patterns

DaCapo, which was last updated in 2009, and the last mention
of a potential update dates back to 2012.

Because manually creating and maintaining a benchmark
suite is tedious, we are investigating new ways of constructing
benchmark suites for specific tasks, such that researchers can
find relevant workloads for their evaluation needs (cf. Section II).
Given the success of existing benchmark suites based on
open-source software, we focus on open-source software as
well. Ultimately, our goal is to (semi-)automatically synthesize
a benchmark suite using open-source code found in public
repositories, leading to the principal research question:

RQ Can a fully automated process find open-source
workloads that are suitable to serve as benchmarks
for specific evaluation needs?

We cannot hope to provide a simple and resolute answer
to such a question in the scope of this paper, but we make the
first step towards the goal, and present the general approach
and preliminary results that encourage further research.

An obvious hurdle to overcome when mining open-source
projects for real-world workloads is obtaining executable code
from a completely unknown code base. For this we rely on (unit)
testing having become best practice in software development [4],
[5], and expect unit tests to provide such code. It is not entirely
clear though, whether we can expect a unit test to serve as
a benchmark workload—after all, a unit test should only test
a single component in isolation. Here, we assume that some
developers are using testing frameworks also for more complex
tests, which would increase our chances of finding interesting
workloads.

In this paper, we therefore investigate the foundational
aspects of our benchmark synthesis approach. To this end, we
develop AutoBench (cf. Section III), a toolchain combining
code repository crawling, pluggable hybrid analyses, and
workload characterization techniques to identify and analyze
workloads. We use AutoBench to conduct an empirical study
to determine whether we can expect to find any unit tests
that could serve as benchmark workloads by sifting through a
huge number of open-source projects, whether we can identify
workloads relevant to a particular research context, and whether
these workloads are sufficiently diverse to enable synthesis of
a benchmark suite.

http://evaluate.inf.usi.ch/anti-patterns

Open
Souyce Projects

<
-* Dynamic Analysis -Q)
& -means
Static Analysis N
2t w-lilll) 1@
o8 @®
< S
g., 52 o 2=
=00 —°,

a) Finding

Figure 1.

b) Filtering

c) Characterization

Overview of the proposed approach. The Finding procedure crawls public repositories searching for open-source projects with certain properties

(labels), and commits to a repository database projects with at least one unit test executing sufficiently long. The Filtering procedure employs context-specific
pluggable hybrid analyses to filter the committed repositories. The Characterization procedure identifies relevant workloads by applying user-defined analyses,

such as k-means clustering, on different workload metrics.

II. MOTIVATING SCENARIOS

To illustrate the evaluation needs of potential users, here we
exemplify three use cases, each focusing on a specific context
and a user who may experience difficulties in finding suitable
benchmarks. These use cases then guide the evaluation of our
approach presented in Section IV.

In the first use case (executor), we consider a researcher
investigating the usage of task execution frameworks in Java
applications, aiming at using the results in different scenarios,
ranging from performance modeling and identification of
scalability issues, to validating the efficiency of new optimiza-
tions. A few concurrent workloads can be found in existing
benchmarks [2], but for a meaningful analysis of the use of
task execution frameworks, additional concurrent workloads
are needed, particularly from recent projects. Apart from the
execution frameworks provided by the Java class library, such as
ThreadPoolExecutor and ForkJoinPool, real-world
projects could also employ custom frameworks that only rely
on basic threading primitives (i.e., the Thread class and the
Runnable or Callable interfaces). Our approach allows
the researcher to find workloads that use either standard or
custom task execution frameworks.

In the second use case (invokedynamic), we consider a
Java Virtual Machine (JVM) developer tasked with optimizing
the execution of the invokedynamic instruction introduced
in Java 7. This instruction simplifies execution of dynamic
languages hosted on the JVM platform [6], and is also used to
implement lambda expressions in Java 8. To evaluate perfor-
mance improvements due to a hypothetical invokedynamic-
related optimization in a production environment, the developer
is looking for benchmarks based on real-world workloads
actually using the invokedynamic instruction. In this case,
an established benchmark suite such as DaCapo cannot be
used, because it is simply too old. Our approach allows the
developer to search for relevant, real-world code suitable for
the evaluation.

In the third use case (actors), we consider a user looking
for realistic workloads utilizing specific actor libraries, with
the goal of discovering optimizations (i.e., library-specific
programming tricks) that she could learn and apply to her
own actor-based application. The actor programming model is
becoming increasingly popular, especially for high-performance

scientific computations [7], and is provided in different flavors
by various libraries. While actor-specific benchmark suites
exist [8], they mostly focus on highlighting differences between
actor libraries, rather than on representing real applications. Our
approach can help the user find real applications employing a
specific actor library, such as Akka® or JetLang®.

III. THE AUTOBENCH TOOLCHAIN

Creating a benchmark suite involves several steps: i) finding
the workloads specific to the desired context; ii) classifying the
workloads using context-specific metrics; iii) selecting concrete
workloads from the candidates; and iv) packaging the workloads
into an easy-to-use artifact.

We have developed the AutoBench toolchain to automate
most (if not all) of these steps. AutoBench is based on crawling
public open-source repositories and applying pluggable user-
defined analyses to unit tests* found in the discovered projects,
thus enabling identification and characterization of candidate
workloads. The overall architecture of AutoBench is shown in
Figure 1.

We note that completely automating benchmark construction
relies on all decisions and choices being automated. This may
be difficult to achieve, especially because the step involving
choice of concrete benchmarks is likely to require human
insight. Also, while AutoBench does not support packaging
workloads into a distributable artifact yet, it still offers a simple
benchmark harness. We now discuss some of the details related
to the steps preceding the choice of concrete workloads.

A. Finding Useful Unit Tests

To discover candidate projects, AutoBench crawls the
GitHub® repository looking for Java and Scala projects with a
Maven-based® build system and JUnit’ as the underlying unit
testing framework. We found many projects matching these

Zhttp://akka.io

3https://github.com/jetlang/core

“For practical purposes, we consider a unit test to be any code that can be
run unattended using a testing framework.

Shttps://github.com/

Ohttps://maven.apache.org/

"http://junit.org/

http://akka.io
https://github.com/jetlang/core
https://github.com/
https://maven.apache.org/
http://junit.org/

constraints, but if necessary, extending AutoBench to support
other repositories, build systems, and testing frameworks is
only a matter of additional engineering effort.

AutoBench downloads and compiles the discovered projects,
and attempts to execute their tests through the build system.
To determine whether a unit test could serve as a workload,
AutoBench times the execution of all passing tests using an
execution-time profiler—the idea being that only longer-running
tests have a chance of containing an interesting workload. The
profiler uses instrumentation to measure the net duration of a
unit test execution, excluding time spent initializing the JVM
and the testing framework.

To decide whether a unit test execution is long enough to be
potentially useful, we turned to existing benchmark suites for
baseline times. Table I shows the minimum execution times®
for the first iteration of benchmarks from three established
benchmark suites, along with the number of benchmarks in
each suite. Based on these times, we require a unit test to
execute for at least 1s to be considered potentially useful. To
put together a benchmark suite, we expect to find at least 12
such tests matching context-specific criteria.

Table I. PROPERTIES OF ESTABLISHED BENCHMARK SUITES.
. N. of Minimum
Benchmark Suite Benchmarks Exec. Time
DaCapo-9.12-bach 14 1.1s
ScalaBench 12 0.8s
SPECjvm2008 16 0.8s

We note that these limits are only meant for first-level
filtering, and that just meeting these criteria does not turn a
unit test into a benchmark workload. We elaborate on this in
the following sections.

B. Context-specific Filtering

Because users are expected to have different requirements
regarding what the workloads should exercise, AutoBench
allows composing a filter pipeline, in which each filter refines
the results produced by its predecessor. The filtering pipeline
basically serves as a compound predicate with short-circuiting
evaluation for efficiency—a unit test passing all the filters is
considered to satisfy the context-specific criteria. In general,
the filters can be arbitrary, but would typically comprise user-
defined static, dynamic, or hybrid analyses, targeting the project
source code, class bytecode, or results of dynamic analyses
collected during test execution.

To ease the development of dynamic analyses, AutoBench
integrates support for the DiSL® instrumentation framework,
and provides an interface which allows a developer to subscribe
to notifications indicating the start and the end of a unit test
execution. Additional analysis-specific event triggers may be
inserted using DiSL. Thanks to DiSL, the instrumentation can
also cover the Java class library. This allows taking library-level
behavior of a test into account during filtering.

8Measured on a multicore platform (Intel Xeon E5-2680 2.7GHz with 8
cores, 64 GB of RAM, CPU frequency scaling and Turbo mode disabled,
Oracle JDK 1.8.0_66 b17 Hotspot Server VM 64-bit, Ubuntu Linux Server
64-bit version 14.04.3 64-bit).

http://disl.ow2.org/

The short-circuiting evaluation of the filter pipeline suggests
that filters should be ordered from coarse-grained and cheap
(in terms of execution time) to fine-grained and expensive. A
filter pipeline aimed at finding workloads using a specific API
would therefore first apply pattern matching (of API invocations,
for example) to project source files, and then use DiSL-based
instrumentation to discover concrete invocations of the API
during test execution.

C. Characterizing Workloads to Facilitate Selection

Selecting concrete workloads from a set of candidates is
the most difficult step in benchmark suite construction, one in
which we anticipate the need for human insight. Nevertheless,
AutoBench supports automating this step, as long as the
selection process is executable by a computer.

To facilitate selection of diverse workloads from many
candidates, this phase is intended for running user-defined
workload characterization analyses that collect comprehensive
information about candidate workloads. Unlike in the filtering
phase, where short-circuiting evaluation is used, here all
the analyses are run to completion. In general, the user
of AutoBench is fully responsible for the outcome of the
selection procedure—it may be used just to collect workload
characterization data, leaving the final selection to the user.

As a proof of concept, we provide an automated selection
procedure based on k-means clustering [9] applied to workload
characterization metrics upon completion of all scheduled
analyses. This allows selecting a fixed number £ = 12
of workloads (to serve as the basis of a benchmark suite,
cf. Section III-A) as the final result of AutoBench execution.

The clustering procedure first chooses initial centroid
workloads using the K-means++ algorithm [10], and then
iteratively assigns all other workloads to their nearest'” centroid.
To reduce the chance of selecting multiple workloads from
the same project, the project name is part of the workload
characterization data. When the clustering stops assigning any
workloads to a new or to a different cluster, we compute,
for each cluster, the nearest workload to the cluster centroid,
resulting in 12 workloads with diverse metrics.

To simplify development of general-purpose benchmark
suites, we provide generic analyses as a part of our toolchain,
consisting of a mix of static (e.g., code complexity analyzer
and source code counter) and dynamic analyses (e.g., code
coverage analyzer and calling-context profiler JP2 [11]).

IV. EVALUATION

Our evaluation of AutoBench is preliminary, driven pri-
marily by the need to assess the feasibility of our approach.
We evaluate AutoBench for the three different use cases
presented in Section II. The evaluation consists of multiple
steps corresponding to the tasks outlined in Section III, each
intended to provide an answer to a specific question:

Q1 Can we expect to find (unit) tests that are long
enough to serve as benchmark workload?

10We use the squared Euclidean distance to compute the distance dij(xi, cj)
between one point x; and centroid cj, j = 1..k: di; = (x; —¢;) - (x; — ¢;5).

http://disl.ow2.org/

Q2 Can dynamic analysis improve identification of
workloads matching a specific evaluation context?
Q3 Can we find diversity in the workloads that would

allow synthesizing a benchmark suite?

In the first step (cf. Section III-A), we let AutoBench crawl
repositories hosted on GitHub looking for suitable projects.
At the time of writing, AutoBench discovered 10339 Java or
Scala projects which were downloaded and checked for usage
of Maven and JUnit. Even though less than 2 % of projects
made it past this stage, compiling and measuring the duration
of unit tests in these projects would be too inefficient. Unit
test filtering is therefore split into two stages. The first (pre-
filtering) stage occurs prior to compilation of a candidate project,
and is expected to utilize pattern matching or simple static
analyses to quickly exclude uninteresting projects. AutoBench
then compiles and measures unit test duration for projects that
pass the pre-filtering stage. The second-stage filtering is then
performed only for tests that execute longer than 1s.

Table II. TEST EXECUTION TIME AFTER PRE-FILTERING.
Use Case] Total Execution Time
Projects Tests >1s > 10s > 100s
executor 133 50704 2869 290 14
invokedynamic 155 52016 | 2085 196 1
actors 1 3627 326 21 0

Table II summarizes the execution time for tests that passed
the pre-filtering stage. We observe that unit test execution time
exceeds 1s in approximately 5 % of the cases. Given enough
projects and tests, repository crawling can indeed discover unit
tests to be considered as workload candidates, leading us to
answer Q1 in a positive way.

In the second step (cf. Section III-B), AutoBench applies
the second-stage filtering to the candidate tests. We use
three instrumentation-based profilers that respectively intercept
runtime usage of Java executor APIs, of invokedynamic
bytecodes, and of actor libraries, allowing us to filter out
workloads that do not match the behavior desired for the
respective use case. For the lack of space, we do not elaborate
the technical details of these profilers.

Table III. WORKLOAD CANDIDATES AFTER FILTERING.
Unit Tests After Filtering
Use Case Ist Stage 2nd Stage
executor 2869 5.66% | 493 17.18%
invokedynamic | 2085 4.01% 4 0.19%
actors 326 8.99% 24 7.36 %

Table III summarizes the effect of second-stage filtering.
We note that the percentage of tests passing the second filtering
stage refers to the number of tests passing the pre-filtering
stage. Using dynamic analysis in the second filtering stage
significantly helps filter out candidates that are not suited for
the given evaluation context. Based on these results, we consider
the answer to Q2 to be also positive. We note that in the case
of the invokedynamic use-case, the number of candidates
dropped to just four test cases, showing that invokedynamic is
rarely used at the moment; we expect this to change in the near
future when more projects make use of lambda expressions
(introduced in Java 8).

In the third and last step (cf. Section III-C), AutoBench
performs workload characterization analyses for all remaining

candidate workloads. To obtain results in a timely fashion, we
used light-weight instrumentation-based profilers to collect the
number of method invocations and the number of object alloca-
tions during test execution. While much more comprehensive
(and heavier) tools for workload characterization exist [11],
the goal of this step was primarily to determine whether there
is diversity in the workloads that could be used for the final
workload selection. The collected metrics were, together with
test execution time and project name, subjected to the k-means
clustering analysis, with & = 12 corresponding to the number of
desired workloads. We only performed the clustering analysis
for the executor case study, because it still had a number of
workload candidates unsuitable for manual selection.

Table IV shows the results of the clustering analysis
performed on the 493 candidate workloads for the executor
case study. The 12 unit tests suggested by our proof-of-concept
selection procedure come from various projects and exhibit
significant diversity in their execution times, number of method
invocations, and object allocations. Given these results, we
consider the answer to Q3 to be positive.

V. DISCUSSION

The results of the preliminary evaluation of the AutoBench
toolchain are encouraging, especially for the executor use case,
in which AutoBench managed to sift through thousands of unit
tests, and obtain—fully automatically—a selection of potentially
exploitable workloads. Before synthesizing a benchmark suite
out of these workloads, we would still subject them to more
thorough analysis, because here we have only used light-weight
workload characterization methods.

The actors use case resulted in 24 workload candidates
which could be reviewed manually. AutoBench found only a
single relevant project, most likely because the actor model is
not so popular in the Java ecosystem. A possible remedy is
to extend AutoBench to support, e.g., build systems and unit
testing frameworks typical for projects in Scala, which is often
the language of choice for actor-based applications.

The invokedynamic use case turned out to require work-
loads that are rare. A possible reason is that invokedynamic
is a recent, but rarely used JVM feature intended for compiler
writers, which Java only started using internally with the
introduction of lambdas in Java 8. Hence it may just take
more time for open-source projects to make substantial use of
Java features that trigger invokedynamic usage.

With respect to the principal RQ posed initially, we clearly
cannot provide a definitive answer based on a preliminary study.
However, we are positive in that the results suggest that our
approach is feasible, encouraging further research.

VI. RELATED STUDIES

Automatic benchmark synthesis has been investigated in
prior research. Bell et al. [12] propose a technique for generating
reduced, shorter-running benchmarks from actual applications.
Their approach relies on subjecting the applications to work-
load characterization to extract dynamic metrics which the
synthesized benchmarks try to reproduce. Van Ertvelde et
al. [13] propose a technique for generating benchmarks based
on existing (proprietary) applications. Their goal is to allow

Table IV.

WORKLOADS SUGGESTED BY OUR PROOF-OF-CONCEPT SELECTION PROCEDURE FOR THE EXECUTOR USE CASE.

Project Unit Test Time [s] Allocations Invocations
1 prova test/ws/prova/test2/ProvaWorkflowsTest.predicate_join 2.523 17938 469320
2 datacube | com/urbanairship/datacube/HBaseBackfillerTest.testMutationsWhileBackfilling 96.806 127961 7628592
3 | jdeferred | org/jdeferred/impl/FilteredPromiseTest.testNoOpFilter 2.003 72 755
4 datacube | com/urbanairship/datacube/BackfillExampleTest.test 62.371 78728 4367224
5 cmb com/comcast/cmb/test/unit/CassandraTest.testCassandraCounters 4.007 54 636
6 svarut no/kommune/bergen/soa/svarut/ServiceContextTest.init 1.983 12510 205187
7 | antlr4 org/antlr/v4/test/runtime/java/TestPerformance.testExpressionGrammar_1 1.212 109350 2595015
8 prova test/ws/prova/test2/ProvaMessagingTest.ring_parallel 17.961 | 251119179 | 3144752537
9 pangool com/datasalt/pangool/tuplemr/mapred/lib/output/TestMultipleOutputs.test 2.088 241759 12943082
10 | prova test/ws/prova/test2/ProvaFunctionalProgrammingTest.func_reactive_unfoldr_iteration_perf_large 2.690 78180455 928571592
11 | graphdb org/neo4j/backup/TestBackup.full ThenIncremental 2.159 11568 88334
12 | prova test/ws/prova/test2/ProvaMetadataTest.cep005 13.267 30393192 443299688

replicating the CPU-level behavior of the application without
revealing proprietary information or requiring the vendor to
make the application publicly available. Joshi et al. [14]
propose a framework for automatic benchmark synthesis that
does not require an existing application to serve as a model.
Instead it takes CPU-level workload characteristics as input,
and generates a workload with the specified characteristics. In
summary, these techniques generate short workloads with the
desired CPU-level characteristics. In contrast, our approach
aims at synthesizing benchmarks by finding existing real-world
workloads exhibiting user-defined behavior. While some authors
point out the importance of unit tests in software projects [4],
[5] and use them to increase performance awareness [15], to
the best of our knowledge we are the first to consider unit tests
as a possible source for benchmarks.

Repository mining [16] has been previous applied to open-
source projects with different goals, including bug predic-
tion [17], automatic comment generation [18], code clone de-
tection [19], and authorship determination [20]. Although static
analysis is usually preferred for analyzing code in repositories,
some researchers utilize also dynamic analyses, e.g., to aid code
refactoring [21]. Our approach allows using hybrid analyses
to identify workloads suitable for benchmarking. Compared
to other open-source repository crawlers [22], AutoBench
combines code crawling with pluggable hybrid analyses to
find, filter, and characterize workloads of interest.

VII. CONCLUSIONS

In this paper, we explored the feasibility of using unit tests
as workloads in custom benchmarks. To this end, we present
AutoBench, a toolchain that automatically finds, filters, and
classifies workloads found in open-source projects. Prelimi-
nary evaluation of AutoBench shows encouraging results for
identification of the desired workloads via pluggable hybrid
analyses. In future, we plan to extend AutoBench to support
additional build systems and testing frameworks, as well as
develop a domain specific language to aid in describing the
filtering, characterization, and workload selection goals. We
plan to make a public release of AutoBench in the near future.

REFERENCES

[1] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, “Bottle Graphs:
Visualizing Scalability Bottlenecks in Multi-threaded Applications,” in
ACM OOPSLA, 2013, pp. 355-372.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur et al., “The DaCapo Benchmarks: Java Benchmarking
Development and Analysis,” in ACM OOPSLA, 2006, pp. 169-190.

(4]

(51

(6]

(71

(8]

(9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder, “Da Capo con
Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine,” in ACM OOPSLA, 2011, pp. 657-676.

R. Takasawa, K. Sakamoto, A. Thara et al., “Do Open Source Software
Projects Conduct Tests Enough?” in Product-Focused Software Process
Improvement, ser. LNCS, 2014, vol. 8892, pp. 322-325.

M. Beller, G. Gousios, and A. Zaidman, “How (Much) Do Developers
Test?” in ICSE, 2015, pp. 559-562.

F. Ortin, P. Conde, D. Fernandez-Lanvin, and R. Izquierdo, “The Runtime
Performance of invokedynamic: An Evaluation with a Java Library,”
IEEE Software, vol. 31, no. 4, pp. 82-90, 2014.

P. Stutz, B. Paudel, M. Verman, and A. Bernstein, “Random Walk
TripleRush: Asynchronous Graph Querying and Sampling,” in WWW,
2015, pp. 1034-1044.

S. M. Imam and V. Sarkar, “Savina - An Actor Benchmark Suite:
Enabling Empirical Evaluation of Actor Libraries,” in AGERE!, 2014,
pp. 67-80.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. Springer New York Inc., 2009.

D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of Careful
Seeding,” in ACM-SIAM SODA, 2007, pp. 1027-1035.

A. Sarimbekov, A. Sewe, W. Binder, P. Moret, and M. Mezini, “JP2:
Call-site Aware Calling Context Profiling for the Java Virtual Machine,”
Science of Computer Programming, vol. 79, pp. 146 — 157, 2014.

R. Bell Jr and L. K. John, “The Case for Automatic Synthesis of
Miniature Benchmarks,” in MoBS, 2005, pp. 4-8.

L. Van Ertvelde and L. Eeckhout, “Benchmark Synthesis for Architecture
and Compiler Exploration,” in /EEE IISWC, 2010, pp. 1-11.

A. Joshi, L. Eeckhout, and L. K. John, “The Return of Synthetic
Benchmarks,” in SPEC Benchmark Workshop, 2008.

V. Horky, P. Libi¢, L. Marek, A. Steinhauser, and P. Tima, “Utiliz-
ing Performance Unit Tests to Increase Performance Awareness,” in
ACM/SPEC ICPE, 2015, pp. 289-300.

A. Hassan, “The Road Ahead for Mining Software Repositories,” in
Frontiers of Software Maintenance, 2008, pp. 48-57.

X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic,
High Accuracy Prediction of Reopened Bugs,” Automated Software
Engineering, vol. 22, no. 1, pp. 75-109, 2015.

E. Wong, T. Liu, and L. Tan, “CloCom: Mining Existing Source Code for
Automatic Comment Generation,” in /EEE SANER, 2015, pp. 380-389.

I. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free Code Clone
Detection for A Large-scale Heterogeneous Java repository,” in /EEE
SANER, 2015, pp. 201-210.

X. Meng, B. P. Miller, W. R. Williams, and A. R. Bernat, “Mining
Software Repositories for Accurate Authorship.” in IEEE ICSM, 2013,
pp- 250-259.

S. Kimura, Y. Higo, H. Igaki, and S. Kusumoto, “Move Code Refactoring
with Dynamic Analysis,” in JEEE ICSM, 2012, pp. 575-578.

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes et al., “Sourcerer:
Mining and Searching Internet-scale Software Repositories,” Data
Mining and Knowledge Discovery, vol. 18, no. 2, pp. 300-336, 2009.

	Introduction
	Motivating Scenarios
	The AutoBench Toolchain
	Finding Useful Unit Tests
	Context-specific Filtering
	Characterizing Workloads to Facilitate Selection

	Evaluation
	Discussion
	Related Studies
	Conclusions
	References

