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Rüschlikon, Switzerland

Walter Binder
University of Lugano
Lugano, Switzerland

Abstract—There is an emerging trend to deploy services in
cloud environments due to their flexibility in providing vir tual
capacity and pay-as-you-go billing features. Cost-aware services
demand computation capacity such as virtual machines (VMs)
from a cloud operator according to the workload (i.e., service
invocations) and pay for the amount of capacity used following
billing contracts. However, as recent empirical studies show, the
performance variability, i.e., non-uniform VM performanc e, is
inherently higher than in private hosting platforms, since cloud
platforms provide VMs running on top of typically heteroge-
neous hardware shared by multiple clients. Consequently, the
provisioning of service capacity in a cloud needs to consider
workload variability as well as varying VM performance. We
propose an opportunistic service replication policy that leverages
the variability in VM performance, as well as the on-demand
billing features of the cloud. Our objective is to minimize the
service provisioning costs by keeping a lower number of faster
VMs, while maintaining target system utilization. Our evaluation
results on traces collected from in-production systems show that
the proposed policy achieves significant cost savings and low
response times.

I. I NTRODUCTION

Deploying services in cloud environments is an attractive
solution, due to cost and ease of management advantages.
Hosting services in a cloud relieves the service provider from
maintaining an expensive computing infrastructure. Thanks to
on-demand virtual resource provisioning, cloud operatorssuch
as Amazon Elastic Compute Cloud (Amazon EC2) [4] provide
on-demand computing capacity, enabling elastic service pro-
visioning. Another advantage of cloud environments is their
pay-as-you-go billing feature. The service provider can thus
request the necessary computing capacity in the unit of Virtual
Machines (VMs) from the cloud operator, according to the
workload. Consequently, hosting services in a cloud — in
conjunction with an effective service replication policy —can
achieve significant cost savings for the service provider.

Recent studies [6], [7], [9], [13], [19] report empirical expe-
riences of migrating various applications onto cloud platforms
and point out a common weakness of cloud environments —
higher performance variability than on private platforms.In
particular, VMs with the same specification (i.e., incurring
the same costs for the user) show significant performance
variability in terms of throughput1; some VMs are faster
and some are slower. This can be explained by the fact
that the cloud operators may consolidate multiple VMs on

1We interchangeable use the performance variability and throughput vari-
ability when refereing to the non-uniform performance of VMs in the cloud.

the same physical machine, resulting in resource sharing and
performance interference. The effects of resource sharingare
dynamically changing depending on varying workloads and
on workload management actions taken by the cloud operator,
such as VM consolidation and VM migration. Furthermore,
hardware features such as dynamic frequency scaling can have
an impact on performance depending on the workloads and on
VM consolidations. As a consequence, the computing capacity
of individual VMs fluctuates, and so does the aggregated
capacity of all provisioned VMs of a service provider.

In addition to the performance variability, another distin-
guishing difference between private and cloud platforms isthe
cost structure and restrictions imposed by the billing contract.
On a private platform, turning a VM on and off is not restricted
by any billing contract, whereas VMs requested in a cloud
are typically charged for pre-defined billing periods; e.g., one
hour is currently the smallest billing period in Amazon EC2.
Therefore, in a cloud it can be wasteful to turn VMs on and off
without considering billing constraints. Moreover, frequently
turning VMs on and off may cause not only additional costs
but also some capacity loss because of the time overhead
associated with the VM control actions. System performance
(i.e., service response times) can fluctuate greatly duringthe
transition of turning VMs on and off.

On the one hand, cloud platforms provide several cost
advantages for elastic service provisioning. On the other hand,
system dynamics become much more complex than in private
platforms and pose several new challenges. Purely workload-
driven service replication policies have been shown effective
on private platforms [2], [10], [16], [17], implementing simple
control actions such as turning service replicas on and off.
However, such policies can fall short in optimizing the trade-
off between cost and performance in a cloud, due to the lack
of consideration of the variability in VMs’ performance and
billing contracts. For example, in a cloud, a lower number of
faster VMs may have the same aggregate capacity as a higher
number of slower VMs, but typically cost less, particularlyif
the faster and the slower VMs are not distinguished by the
billing contracts. To optimize service provisioning costsand
service performance simultaneously, the service replication
policy in the cloud needs to choose not only the right number
of VMs but also the VMs with better performance. As such,
a broad range of criteria, such as workload, heterogeneity of
VM performance, and billing contracts, needs to be taken into
consideration when designing service replication algorithms
for cloud environments.



In this paper we develop an opportunistic replication pol-
icy for elastic service provisioning on cloud platforms. Our
objective is to leverage the variability in VM performance
and their billing contracts in a cloud such that the VM costs
of all services hosted by a provider are minimized, while
maintaining given system utilization. Our policy takes several
control actions in a slotted window: turning VMs on and
off, replacing slower VMs in the hope of getting faster ones,
and reconfiguring VMs from one type of service to another.
All these actions are associated with non-negligible time
overhead. The criteria are the predicted workload, estimated
VM performance, target system utilization, and billing contract
periods. In particular, we deploy VM controllers for all types
of services to collect statistics required by aforementioned
the criteria. We implement an opportunistic policy within a
VM broker, which coordinates the VM control actions across
different services. To evaluate the cost and performance gain
of our proposed policy, we built a detailed simulator for
services hosted in a cloud, driven by service utilization traces
collected from real IBM production systems. Our evaluation
results show that the proposed opportunistic replication policy
achieves significantly lower service provisioning costs than
workload-oblivious or purely workload-driven policies.

The original scientific contribution of this paper is a novel
service replication policy, which is specially designed to
explore the variability of VM performance on cloud platforms.
In contrast to existing replication polices, we optimize the cost
and performance not only for a single service but also for
the entire system, by an augmented set of control actions, in
particular replacing and reconfiguring VMs. Our evaluation
environment encompasses a large number of different param-
eters, such as different time overheads associated with each
control action. The proposed opportunistic replication policy
is shown to achieve lower cost and better performance for
services hosted in the cloud, compared to replication policies
oblivious to the unique characteristics in the cloud.

This paper is organized as follows: The system architecture
is explained in Section II. The proposed opportunistic replica-
tion policy in Section III. Section IV contains the experimental
results. Related studies are summarized in Section V. Section
VI concludes this paper.

II. SYSTEM OVERVIEW

A. System Architecture and Dynamics

Figure 1 illustrates the system architecture considered in
this paper. A service provider deploysI types of services
Si (1≤ i ≤ I ) in a cloud. The services considered here are
simple atomic ones (i.e., we do not focus on composite
services that invoke other services). At any given moment,
there areni ≥ 1 VMs running a service of typei; we also
say there areni replicas of servicei in the cloud. The values
ni may change over time according to the actions taken by
the policy presented in this paper. However, there is alwaysat
least one replica for each service.

To limit the scope of this study, we assume that all ser-
vices are CPU-bound and multi-threaded, that is, capable of
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Fig. 1. Schematics of services system deployed in a Cloud platform.

handling several concurrent invocation requests in parallel. We
also assume that the service execution time is not significantly
influenced by the input parameters passed upon service invo-
cation.

For each service, there is a corresponding load balancer
and VM controller that are deployed in the cloud, too. The
load balancer distributes incoming invocation requests tothe
replicas of the requested service (i.e., to the currently active
VMs running a service of the corresponding type) with the
fewest outstanding requests. We assume that the size of invo-
cation requests varies, following an exponential distribution,
and thus the execution times of requests follow an exponential
distribution for a given VM throughput. The VM controller
monitors active VMs and keeps tracks of statistics about the
invocation rate, VM performance, and the billing periods of
the active VMs. All controllers communicate the statisticsto
the VM broker, on which the proposed opportunistic policy
and the control actions are implemented.

The throughput of a VM (i.e., its performance) is not fixed
but changes over time, due to the possibly heterogeneous
infrastructure used by the cloud operator, hardware optimiza-
tions that result in performance fluctuations, performancein-
terference of multiple VMs consolidated on the same physical
machine, and VM migrations. In this paper, we assume that
the average performance of VMs with the same specification
fluctuates in the discrete range of values. The specific values of
VM performance can be estimated by observing the completed
service requests. Each VM is bound to a contract that defines
the billing period (e.g., one or several hours). That is, releasing
a VM before the end of a billing period would be wasteful
for the service provider who would still have to pay until the
end of the period.

B. VM Replica Provisioning

Here, the VM replication provisioning is implemented in
slotted windows. The length of the control windows depends
on the dynamics of the workload and the parameterization
of the service replication policy. We assume that the billing
period is a multiple of the algorithm’s execution interval.
In our simulation, we use a billing period of one hour. To
dynamically provide VM replicas in a cost-effective manner,



the VM broker considers four kinds of control actions: (1) turn
on a new VM; (2) turn off a VM (i.e., terminating the contract
at the end of a billing period); (3) replace a VM at the end of a
billing period, if the VM is suspected of not performing well;
(4) reconfigure a (previously allocated) VM to run a service
of a different type. The first three actions are requests towards
the cloud operator, while the fourth action is transparent to the
cloud operator.

There are some time overheads associated with each action.
The turning on of a new VM is assumed to takeυ seconds
to load and start the required service. The VMs that are
about to be turned off need to immediately stop receiving
invocation requests and complete the remaining invocations.
As for VMs reconfigured from one service to another one, they
no longer receive invocations of the former service and start
serving invocations of the new service right after completing
the remaining requests and after the reconfiguration process.
Here, similar to the process of loading services, we assume
the configuration time takes alsoυ seconds. The newly turned-
on and reconfigured VMs are published as “available” VMs
after the completion of their loading/configuration process.
Note that previous related studies [2], [10], [16], [17] tend
to overlook the overhead structure and lead to a simplified
replication policy.

III. O PPORTUNISTICREPLICATION POLICY

Following the rule of thumb practiced in today’s resource
management [2], [20], we provide sufficient VMs to each
service such that the VMs’ aggregate capacities are well
utilized. A typical target utilization could be around 80%
[15], for handling temporary workload variation. Here, we aim
at achieving better performance metrics, e.g., response time,
and maintain target utilization at a lower cost, by leveraging
a pay-as-you-go billing model and the variability in VMs’
performance in the cloud.

We develop an opportunistic replication policy and imple-
ment it in the VM broker. In contrast to replication policiesin
private platforms, our proposed policy decides not only on
the number of active VMs per service but also intends to
acquire VMs with better performance. The general idea of our
opportunistic policy is that the VM broker first decides on the
number of VMs for each service, based on the information
monitored/collected in VM controllers. The second step is
to select specific VMs, using appropriate control actions.
The selection criteria considered are the billing period, the
difference in the number of VMs in adjacent windows, and
the performance of active VMs. Each controller then executes
the decisions made by the broker. In the following text, we
first describe the control timing of the broker, the algorithm
to decide on the number of VMs for each service, and finally
the algorithm to select VMs.

A. Control Window and Overhead

Herein, we consider a control window of fixed length,τ
minutes, indexed byt. Due to the time overhead associated
with each control actions, the VM broker queries the required

Fig. 2. Timing of control actions and windows for the VM broker.

statistics from controllers atε seconds before the beginning of
every control window. The schematics are depicted in Fig. 2.
Controllers of services immediately send back their invocation
rate, VM performance, and their billing periods. Using the
collected information and algorithms described in the fol-
lowing two subsections, the broker computes and broadcasts
decision of VM replication and selection to all controllers. We
assume that such a decision process takes a negligible time
and no time overhead occurs. We choose such a value ofε
that there is a sufficient time for turned-on VMs to load the
services, turned-off VMs to complete the remaining service
invocation, replaced VMs to complete pending requests and
replacement VMs to load the new service, and reconfigured
VMs to complete pending requests and load the new service.

B. Number of Replica VMs

To proactively provide a sufficient number of well-utilized
VMs at the beginning of every control window, the broker
needs to know the utilization of active service VMs by the
estimates of the average invocation rates, and the aggregate
capacity.

We define the utilization of active servicei VMs, Ui , as the
invocation rate,λi, divided by the aggregate capacity of active
VMs, i.e., ∑ni

j=1 µi j = niµi , whereµi j denotes the throughput
of VM j for servicei and µi denotes the average throughput
per active VMs,

Ui =
λi

∑ni
j=1 µi j

=
λi

niµi
. (1)

Note that as there can be multiple threads in a replica VM, the
performance of a VM corresponds to the summation of all the
threads. Our objective of VM provisioning is that the effective
utilization of every service at every window is less than the
target value,Ui(t) < U∗,∀i, t. To that end, we first need to
estimate the average invocation rate and average capacity for
each coming control window. We propose to use a simple last
value prediction for the invocation rate,

λ̂i(t) = λi(t −1), (2)

and for the average throughput,

µ̂i(t) = µi(t −1) =
∑ni(t−1)

j=1 µi j (t −1)

ni(t −1)
. (3)

Substituting the estimated values of Eq. 2 and 3 into Eq. 1,
the broker estimates the utilization of servicei when deploying



ni(t) VMs at the beginning of windowt,

Ui(t) =
λ̂i(t)

ni(t)µ̂i(t)
. (4)

After straightforward algebraic manipulation, the brokercon-
trols ni(t) such thatUi(t)≤U∗, as follows,

ni(t) = ⌈
λ̂i(t)

U∗µ̂i(t)
⌉, ∀i, t. (5)

Once the broker obtains the values ofni(t), it proceeds to
decided on which VMs to be turned off, replaced, reconfig-
ured, and how many new VMs to be turned on.

C. Turning on-off, Replacing, and Reconfiguring VMs

The objective of selecting VMs is to maintain as few VMs
as possible and to keep as many fast VMs as possible, such
that the return on payment for active VMs is maximized.
Consequently, the broker only turns off the expiring VMs,
whose billing contracts end, and only turns on new VMs for
services when there is no spare capacity from other services.
In general, the broker is greedy in maximizing the “benefit”
of individual services, rather than the global welfare of all
services, when it comes to decreasing VMs. The broker also
increases VMs in a collaborative manner, as elaborated in the
following.

The decision process of the broker is structured into two
parts. The first part focuses on the services which need to
reduce VMs, and the second part focuses on services which
need to increase VMs, from their current provision. Critical
parameters considered are the number of expiring contracts,
Ei(t), the difference in the number of VMs in adjacent
windows,δi(t) = ni(t)−ni(t−1), and the performance of the
VMs. Expiring VMs can be either turned off, reconfigured
to other services, or replaced by other VMs, whereas non-
expiring VMs can only be reconfigured. Whenδi(t) > 0, the
service i demands more VMs at windowt, whereas when
δi(t) < 0, the servicei tries to reduce VMs by turning off
or reconfiguring, given the possibility. It implies that notall
services can always reduce VMs as the workload decreases
shown in Eq. 5, due to the billing periods and no available
services requiring more VMs.

To facilitate selecting control actions for increasing and
decreasing VMs, we keep two lists, an expiring list and a
reconfiguration list, recording expiring VMs and reconfig-
urable VMs, respectively. The lists are filled up during the
“decreasing” part of the policy and flushed out during the
“increasing” part of the policy. Both lists are maintained in a
slowest-first manner. For example, the broker always selects
the slowest expiring VMs first onto the expiring list and
distributes the slowest VMs first to the services withδi(t)> 0.

1) Decreasing VMs:For services withδi(t)< 0, the broker
greedily optimizes the aggregate VM capacity of individual
services by turning off expiring VMs or replacing the slow
expiring VMs with faster ones.

When there are more expiring VMs than reduced VMs,
Ei(t)> |δi(t)|,, where| ∗ | denotes the absolute value and|δi |

is the number of VMs needs to be reduced. the broker first
turns off |δi(t)| expiring and slowest VMs. Then, the broker
tries to replace remaining expiring VMs by comparing the
corresponding cost and benefit. The cost of replacing VMs is
the unavailability of its capacity during the time a replacement
VM is being configured. The potential benefit is the chance of
obtaining a VM with better performance. We thus derive the
quantitative cost of replacing a VMj of servicei as

Ci j = εµi j . (6)

On the other hand, we derive the benefit to replace expiring
VM j of servicei as the expected capacity gain, which sums
the product of probabilities of throughput levels, the through-
put differences, and the control window length. Assuming a
VM has K different levels of throughput and the probability
of receiving a VM with throughput levelk is Pk, one can write

Bi j

K

∑
k6= j

Pk(µik − µi j )τ. (7)

When the benefit of replacing VMj of servicei is greater than
the cost,Bi j >Ci j , the broker replaces VMj by a new VM.
Note that the replacing decision may not necessarily lead to
a faster VM. From Eq. 6, one can see that probabilistically
speaking, it is beneficial to replace VMs especially when
currently expiring VMs are slow and the control window is
longer.

When there is not a sufficient number of expiring VMs
to be reduced, i.e.,Ei(t) < |δi(t)|, the broker first turns off
Ei(t) expiring VMs. Then, among the non-expiring VMs, it
chooses the{|δi(t)|−Ei(t)} slowest VMs and adds them to the
reconfiguration list,Ψ. Such a list is first filled up by services
with δi(t)< 0 in a sequential order of service index, and then
flushed out by services withδi(t)> 0 in a round robin fashion
for reasons of fairness. As such, the time overheads associated
with replacing and reconfiguring VMs can be minimized.

2) Increasing VMs:Once the broker completes the process
of increasing VMs, it proceeds to the services requiring
additional VMs. The broker first tries to distribute any avail-
able VMs on the reconfiguration list, and then turn on new
VMs where required. Let the total number of VMs on the
reconfiguration list benΨ(t), and total number of additional
VMs from services withδi(t) > 0 be ∆ = ∑i∈{δi(t)>0} δi(t).
When nΨ(t) > ∆, it implies a sufficient number of VMs can
be reconfigured and then distributed to other services. The
broker distributes the slowest∆ VMs on the reconfiguration
list to services withδi(t)> 0 in a round-robin fashion. Then,
the remaining{nΨ(t)−∆} VMs on the reconfiguration list are
returned to their original services. On the other hand, when
there is not a sufficient number of VMs on the reconfiguration
list to meet the requirement for an increasing number of
VMs, the broker only distributesnΨ(t) VMs in a round-robin
fashion and turns on additional VMs according to unfulfilled
demands. We summarize the opportunistic replication policy
implemented on the broker in Algorithm 1.



Algorithm 1 Opportunistic Replication Policy on the Broker
1: Computeni (t) as in Eq.5 andδi = ni(t)−ni(t−1), ∀ i.
2: for i = 1 to I services, withδi (t)≤ 0 do
3: if Ei(t)> |δi | then
4: Turn off |δi | expiring VMs
5: Replace up to{Ei (t)−|δi(t)|} servers based on Eq. 7, and 6.
6: else
7: RemoveEi(t) expiring VMs
8: Add slowest{|δi(t)|−Ei} VMs to the reconfiguration list,Ψ.
9: end if
10: end for
11: for For services withδi (t)> 0 do
12: if nΨ(t)> ∑i δi (t) = ∆ then
13: Distribute ∆ VMs on the reconfiguration list round-robinly
14: Return remaining{nΨ(t)−∆} VMs back to original services
15: else
16: Distribute nΨ(t) VMs on the reconfiguration list in round-robin
17: Add {∆ − nΨ(t)} servers and distribute to the corresponding services in

round-robin
18: Empty the reconfiguration list
19: end if
20: end for

IV. EVALUATION

In this section, we use trace driven simulation to evaluate the
proposed opportunistic replication policy for service systems
deployed in the cloud. The performance metrics evaluated are
the VM costs, the average normalized throughput of VMs, the
average utilization of active VMs, and the average response
time of an invocation. To show the effectiveness of the VM
broker, we also present the detailed statistics of control ac-
tions. We benchmark our policy against a workload oblivious
replication policy and a purely workload driven policy. Our
evaluation results, based on the average of ten simulation runs,
show that the VM broker can significant reduce the cost by
acquiring a smaller number and faster VMs in a collaborative
manner, while maintaining the system utilization slightlylower
than the target values,U∗ = 80%, and achieving low average
response times of invocations.

A. System Configuration

We built a trace-driven simulator of service-oriented systems
in the cloud using Java. Invocation requests are generated for
each service, following a Poisson process with time varying
arrival rates. Each VM replica is configured to have one thread,
independent of service types. Moreover, we assume a VM
can have three different performance to process requests of
each service in our simulated cloud environment. To ease the
analysis, we express VM throughput as a multiplier of the
minimum throughput of each service,αµi . The specific values
areα = {1,1.2,1.5}, i.e., a VM has an average throughput of
µi , 1.2µi and 1.5µi for processing request of servicei. The
probabilities of obtaining VMs with differentα values are
0.5, 0.3, 0.2 respectively. The aforementioned values can be
configured according to values measured in different cloud
platforms.

The VM controller collects the required statisticsε = 20
seconds before every control window of lengthτ = 5 minutes
and the VM broker immediately computes and implements the
control actions, some of which have time overhead ofυ = 20
seconds. For a fair comparison, the timing of control actions

in policy II are synchronized with the broker. The specific
length of the control window is chosen according to workload
characteristics and prediction schemes. The discussion ofthe
optimality of those values is beyond the scope of this paper.

Cost Calculation

We follow the convention in today’s commercial cloud [4]
and use an hour as the billing period. The actual cost per
billing period is different between cloud providers, and also
varies depending on the requested VM specifications. We
present our results in terms of relative cost savings, and
the results are therefore not bound to any cloud provider in
particular.

The total cost is the summation of all requested VM hours.
When VMs are turned off before the end of billing period,
they still need to pay for the remaining minutes. We add the
cost for any possibly remaining periods immediately onto the
windows when those VM are turned off.

B. The Workloads: Invocation Requests

Following approaches used in [2], [12], [20], we adopt the
utilization traces from current IBM production systems as
workload input for each service, i.e., to generate the invocation
requests. Based on the basic utilization law [8], the utilization
multiplied by a normalized constant reflects the request rate,
especially when the load is below 100% utilization.

We collect utilization traces from four large multi-processor
servers engaging in web services in financial, airline and media
industries, in late January, 2012. The trace from one server
is considered as one service here. The utilization values are
the average computed over 15 minutes. To obtain the request
rate per second, we multiply the utilization values with the
processing power of the server, i.e., the number of cores. We
illustrate the rationale by an example: Let the utilizationvalue
be 35% for a 16 core server. This implies that, on average,
5.6 (0.35·16) cores are busy. We further assume that a core
is occupied by a single request and such a value corresponds
to the request arrival rate for a small granularity, i.e., second.
As such, we obtain the request rates for four services, shown
in Fig. 3. One can clearly see that the workloads are time-
varying.

The execution times of each service follow the exponential
distribution with mean1

µ1
= 1

1,
1
µ2

= 1
1,

1
µ3

= 1
10,

1
µ4

= 1
8 seconds

respectively. Note that due to the performance variability
of VMs, the execution times can be scaled down by the
multiplying factor,α, by 1.2 or 1.5.

Due to limitations in the granularity in collecting utilization
we are unable to collect the higher moment statistics and fur-
ther fit the empirical distribution of utilization. Consequently,
we assume that the arrivals of the requests follow Poisson
processes for each 15 minutes and that their means fluctuate
according to Fig. 3. Once requests are generated, they are
then immediately forwarded to the corresponding and available
service load balancers.

We compare the proposed policy against the following
policies, which are oblivious to the variability of the workload,
heterogeneity of VM throughput, or billing periods:
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Fig. 3. Average request rates of services,λi (t).

• Policy I: statically providing maximum number of VMs
for each service. This is a workload oblivious policy.

• Policy II(o), Policy II(p): dynamically providing VMs
for each service, according to the workload only. This
is a purely workload-driven policy. The number of VMs
is decided by Eq. 5, but based on the minimum VM
throughput only. We provide two versions of Policy
II, namely II(a), and II(p). The former one uses the
actual request rate information and the later one uses the
predicted ones in Eq.2.

We also use the actual and predicted invocation rates in the
proposed broker, and denote them broker(a) and broker(p)
in the following. The difference between these two versions
comes from the performance degradation due to the inaccurate
workload prediction.

C. Two Services

We first evaluate the VM broker on a system with two ser-
vices, namely service 1 and 2 shown in Fig. 3. We summarize
the results in terms of cost saving, average utilization, average
response time, and average normalized VM throughput in
Table I. The cost savings are compared with the cost of
policy I, where the provisioning costs are the highest. The
normalized VM throughput is calculated from the observed
VM throughput divided by the minimum throughput for each
service.

Clearly, static provisioning of VMs in policy I incurs high
costs, and results in low utilization of VMs, as well as
lower response times. Policy II saves costs for both services,
compared to the policy I, because of frequently turning VMs
on and off, and being oblivious to the performance variability
of VM throughput. However, policy II has a much lower
cost saving than the broker, especially for service 1, whose
workloads are more stable and the cost savings from dy-
namic VM provisioning is smaller. In contrast, the broker can
leverage the control knob of ”replacing” VM for less varying
workloads and acquire faster VMs, which in turn results in
a lower number of VMs provisioned and subsequently lower
cost. As for the utilization, the broker maintains the utilization
at roughly 70 %, which is slightly lower than the target value
of 80 %. Overall, the broker has the highest cost savings,
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Fig. 4. Average number of active VMs per window(ni ) and average number
of VM used in each control action: turn off (a1), replace (a2), reconfigure off
(a31), reconfigure on (a32), turn on (a4).

medium utilization, the lowest response time, and the highest
normalized VM throughput.

Furthermore, we present average statistics about control
actions and the number of VMs provisioned in Fig. I. We
denote a1, a2, a31, a32, and a4 as the number of VM, which
are turned off, replaced, and reconfigured to another services,
reconfigured from another service VM, and turned on, respec-
tively. The first three actions are associated with ”decreasing
VMs”, while the latter two are for ”increasing” VMs. One
can see that there is a higher number of reconfiguration and
lower number of replacing occurring for service 2, because of a
higher oscillation in workloads compared to service 1. Due to a
higher variety of control actions taken for service 2, the broker
is able to obtain VMs with higher throughput, i.e., the average
normalized throughput of service 2 is higher than service 1.
We conclude that the broker can apply different control actions
according to different dynamics of workloads, and further gain
cost savings without sacrificing the performance.

D. Four Services

Secondly, we evaluate the VM broker on a system with four
services, namely service 1-4 shown in Fig. 3. We present the
cost savings, average utilization, average response time,and
average normalized VM throughput under different policies
in Table II. The statistics of the control actions used in the
proposed broker are summarized in Fig. 5. Similar to the
observations made in previous sections, we can see that the
proposed VM broker can achieve significantly higher costing
savings than other policies, while adhering to the utilization
target and attaining lower response times. For the services
with less varying workloads, i.e., services 1, 3 and 4, the
broker can gain cost saving by replacing slower VM with
faster VMs, whereas policy II can only gain marginal cost
savings, compared to the static provisioning. For service 2,
although policy II and the broker can gain good cost savings,
the broker still obtains twice as high savings as policy II due
to effective replacing and reconfiguration of VMs.

As the broker applies VM control actions in a collabora-
tive manner, especially through the reconfiguration, a better
performance gain can be achieved by the broker in systems
with a higher number of services. The overall performance
in the case of four services is better than in the case of two
services. One can observe this especially by comparing service



TABLE I
PERFORMANCE OF DIFFERENT POLICIES: TWO SERVICES.

Policy Total S1 S2
CS[%] CS[%] U[%]. RT[s] AT CS[%] U[%]. RT[s] AT

I 0 0 55.8 0.91 1.14 0 49.4 0.45 1.15
II(o) 14 7 74.6 1.08 1.16 21 74.9 0.55 1.17
II(p) 14 7 74.1 2.18 1.17 21 73.7 0.55 1.16

Brok.(o) 32 27 68.9 0.96 1.22 38 72.7 0.52 1.23
Brok.(p) 31 25 68.0 1.75 1.22 37 71.6 0.50 1.23

cs=normalized cost savings, U=utilization,
RT=average response time of invocation, AT=average normalized throughput of VMs

1 and 2 in both system scenarios. In particular, the average
utilization of VMs for each service increases slightly and gets
closer to the target value (80%). Both services also achieve
higher cost savings in the four services scenario, because of
more opportunities to reconfigure VMs to different services.
From our evaluation, we believe our proposed policy can
opportunistically acquire a fewer and faster VMs for different
workloads, and its effectiveness grows with the scale of the
system, i.e., with a higher number of different services.

Discussion: We would like to point out a few limitation
of our study. First, this study considers only atomic services,
and modeling dependencies among services (i.e., composite
services) will be our future work. Second, we adopt preset val-
ues for modeling the variability of VM performance. We note
that the cost savings and performance metrics presented here
can change depending on those values. We plan to conduct
extensive measurements in a commercial cloud environment
to confirm that our simulation results can be carried over to
real systems.

V. RELATED STUDIES

Cloud computing is an merging platform for commercial
and scientific applications, due to advantages in the pay-
as-you-go business model and elasticity capacity provision.
Various studies [6], [7], [9], [13], [19] present performance
studies and report their experiences on migration of vari-
ous applications to commercial cloud platforms. A common
observation is the high variability in the quality of service.
Kossmann et al. [9] present a comprehensive evaluation of
database applications under different cloud architectures. They
conclude that the cost and performance of the services vary
significantly depending on the workload. Jackson et al. [6],
[7] port various scientific applications, such as SNFactory
pipeline, to the Amazon EC2 [4]. Their results show that
the performance of EC2 is more variable and slower than
non-cloud computing platforms, due to the limitation of in-
terconnects on the EC2. Ueda and Nakatani evaluate a wiki
workload and Apache daytrader using two open-source cloud
platforms, OpenNebula [14] and Eucalyptus [13]. The two
platforms give very different performance results, e.g., in terms
of VM provisioning, response time, and throughput, compared
to Amazon EC2 .

Because of the advantages of cloud computing, there is an
emerging trend to migrate service-oriented applications from
existing system to the cloud. The focus of related studies are

widely spread: from a summary of the practical experiences
[1], to frameworks for automating and easing the migration
process [11], and cost optimization [5], [18]. Chauhan and
Babar [1] report practical experiences of migrating an open
source software framework, Hackystat, to the cloud. One of
the key findings is that it is easier to migrate software systems
consisting of stateless components to IaaS clouds.

Various service replication strategies are developed and
evaluated for guaranteeing the reliability [3], [21] or perfor-
mance under time-varying workloads [2], [10], [15]–[17]. To
deliver highly dependable service systems, Zhen and Lyu [21]
compare different combinations of replication strategies, using
their proposed evaluation framework. Their objective is to
select a suitable strategy such that the performance threshold
and failure threshold are met. Dustdar and Juszczyk [3]
developed a passive replication strategy on mobile ad-hoc
networks, whose topologies vary over time, and validated it
on a simulation prototype. As for workload driven replication
strategy, both single-tier [2], [10] and multiple-tier [16], [17]
web server systems in a non-cloud platform are well addressed.
Petrucci et al. [15] implement a dynamic service provisioning
policy to optimize power consumption on a heterogeneous
cluster. While most provisioning studies monitor the request
rate, Singh et al. [16] monitor not only the request rate but
also the mix of applications.

Motivated by the emerging practice of migrating service
systems to the cloud, we study the opportunistic replication
strategy, which leverage the pay-as-you-go billing feature and
high system variability in the cloud. Our study is based on
several observations made in the prior art. In contrast to
existing replication policies for private platforms, our proposed
replication policy is driven by the workload dynamics as well
as the performance reliability, and most importantly designed
for the cloud platform. Moreover, we are able to not only
handle elastic workload demands of different services, butalso
maintain a very satisfactory performance at a lower cost.

VI. CONCLUSION

In this paper, we propose an opportunistic replication policy,
specially designed for services deployed in a cloud. The
objective of our work is to leverage the variability in VM
performance and pay-as-you-go billing contracts in the cloud,
such that the number of VMs for each service is minimized
and opportunistically provisioned with better performingVMs.
Our policy is based on comprehensive workload and system



TABLE II
PERFORMANCE OF UNDER DIFFERENT POLICIES: FOUR SERVICES

Policy Total S1 S2 S3 S4
CS[%] CS[%] U[%] RT AS CS[%] U[%] RT AS CS[%] U[%] RT AS CS[%] U[%] RT AS

I 0.00 0.00 55.8 0.91 1.14 0.00 49.4 0.45 1.15 0.00 63.8 0.37 1.16 0.00 58.2 1.74 1.17
II(a) 12.4 7.95 74.6 1.09 1.15 20.2 74.9 0.56 1.15 7.18 75.0 0.44 1.16 13.3 76.0 1.98 1.17
II(p) 11.2 5.61 73.9 2.37 1.16 19.7 73.9 0.56 1.15 7.01 75.1 0.44 1.18 12.0 76.7 2.17 1.16

Brok.(a) 29.7 30.1 71.6 0.99 1.22 38.8 73.2 0.52 1.24 19.6 73.1 0.42 1.23 28.6 74.9 1.86 1.23
Brok.(p) 29.5 28.4 71.6 2.34 1.20 37.0 71.8 0.51 1.23 21.9 74.0 0.42 1.25 29.3 75.6 2.03 1.23

CS=normalized cost saving, U=utilization, RT=average response time of invocation, AT=average normalized throughput of VMs
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Fig. 5. Average number of active VMs per window(ni ) and average number of VM used in each control action: turn off (a1), replace (a2), reconfigure off
(a31), reconfigure on (a32), turn on (a4).

characteristics, i.e., time variability of workloads, VM vari-
ability, invocation variability, and billing periods. Moreover,
we consider a complex set of control actions, i.e., turning
on and off, replacing and reconfiguring VMs, with detailed
modeling of the respective overhead. The proposed policy not
only optimizes the cost of a single service but also the welfare
of all services in a collaborative manner.

Our evaluation results using production traces show that the
proposed policy achieves lower cost and better performance
in terms of VM utilization and response time, compared to
existing replication policies that are oblivious to performance
and billing characteristics of the cloud.

Regarding ongoing research, we are exploring more com-
plex service-oriented systems including composite services.
Moreover, we are conducting further evaluations on commer-
cial and research cloud platforms.
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