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Abstract—There is an emerging trend to deploy services in the same physical machine, resulting in resource sharidg an
cloud environments due to their flexibility in providing vir tual performance interference. The effects of resource shaiag
capacity and pay-as-you-go billing features. Cost-awareesvices dynamically changing depending on varying workloads and
demand computation capacity such as virtual machines (VMs) .
from a cloud operator according to the workload (i.e., servte on workload managgmgnt actions take!"l by.the cloud operator,
invocations) and pay for the amount of capacity used followig SUch as VM consolidation and VM migration. Furthermore,
billing contracts. However, as recent empirical studies sbw, the hardware features such as dynamic frequency scaling can hav
performance variability, i.e., non-uniform VM performance, is an impact on performance depending on the workloads and on
inherently higher than in private hosting platforms, since cloud \/\1 consolidations. As a consequence, the computing capacit

platforms provide VMs running on top of typically heteroge- o
neous hardware shared by multiple clients. Consequently,ie ©f individual VMs fluctuates, and so does the aggregated

provisioning of service capacity in a cloud needs to conside Capacity of all provisioned VMs of a service provider.
workload variability as well as varying VM performance. We In addition to the performance variability, another distin

propose an opportunistic service replication policy that everages guishing difference between private and cloud platfornthés
the variability in VM performance, as well as the on-demand oot sirycture and restrictions imposed by the billing caett

billing features of the cloud. Our objective is to minimize te . . . .
service provisioning costs by keeping a lower number of fast On a private platform, turning a VM on and off is not restritte

VMs, while maintaining target system utilization. Our evaluation by any billing contract, whereas VMs requested in a cloud
results on traces collected from in-production systems shothat are typically charged for pre-defined billing periods; eane
the proposed policy achieves significant cost savings andwo hour is currently the smallest billing period in Amazon EC2.
response times. Therefore, in a cloud it can be wasteful to turn VMs on and off
without considering billing constraints. Moreover, freqly
I. INTRODUCTION turning VMs on and off may cause not only additional costs
\}C&It also some capacity loss because of the time overhead
ézgg_ociated with the VM control actions. System performance
i.e., service response times) can fluctuate greatly dutieg

Deploying services in cloud environments is an attracti
solution, due to cost and ease of management advanta
Hosting services in a cloud relieves the service providemfr > i
maintaining an expensive computing infrastructure. Tisaok Fansition of turning VMs on and off. _
on-demand virtual resource provisioning, cloud operagach On the one hanq, clou_d platfqrr_ns_prowde several cost
as Amazon Elastic Compute Cloud (Amazon EC2) [4] IoroVio%dvantages for_ elastic service provisioning. On the othedh
on-demand computing capacity, enabling elastic service p ystem dynamics become much more complex than in private
visioning. Another advantage of cloud environments is rtheq;lgtforms a_nd pose se_veral new challenges. Purely wprkload
pay-as-you-go billing feature. The service provider camsthdr'ver_] service replication policies have_ been shoyvn e_ﬁect
request the necessary computing capacity in the unit ofiairt ©7 Private platforms [2], [10], [16], [17], implementingnsple

Machines (VMs) from the cloud operator, according to th%ontrol actions such as turning service replicas on and off.

workload. Consequently, hosting services in a cloud — tHowever, such policies can fall sho_rt in optimizing the &rad
conjunction with an effective service replication policy ean off between cost and performance in a cloud, due to the lack

achieve significant cost savings for the service provider. Of _consideration of the variabili_ty in VMs' performance and
Recent studies [6], [7], [9], [13], [19] report empiricalgs billing contracts. For example, in a cloud, a Iowe_r number_ of

riences of migrating various applications onto cloud mlatfs faster VMs may have the same aggregate capacny_ as a higher

and point out a common weakness of cloud environments number of slower VMs, but typically cost Igs_s, p:_;lrtlculaﬂy

higher performance variability than on private platforns. thg faster and the slow_er_VMs are not d|§t_|ng_U|shed by the

particular, VMs with the same specification (i.e., incugrin b|II|n_g contracts. To opFlmlze Service provisioning COW

the same costs for the user) show significant performan%‘:érv'Ce performance simultaneously, the service repmat

variability in terms of throuahpdt some VMs are faster policy in the cloud needs to choose not only the right number
y ghpu VMs but also the VMs with better performance. As such,

and some are slower. This can be explained by the fapéij d £ criteri h Kload. het 6it
that the cloud operators may consolidate multiple VMs ofy, Proad range ot criteria, such as workioad, heterogenéity o

VM performance, and billing contracts, needs to be takem int

1We interchangeable use the performance variability anoutirput vari- conS|derat|on_ when designing service rep“cat'on alporg
ability when refereing to the non-uniform performance of ¥ the cloud. for cloud environments.



In this paper we develop an opportunistic replication pol-

icy for elastic service provisioning on cloud platforms. rOu 4 /
objective is to leverage the variability in VM performance ‘

and their billing contracts in a cloud such that the VM costs

off, replacing slower VMs in the hope of getting faster ones,
and reconfiguring VMs from one type of service to another.

of all services hosted by a provider are minimized, while - ‘g ) ‘g | ‘g |
maintaining given system utilization. Our policy takes exal @.C@-
control actions in a slotted window: turning VMs on and WS — QD\

Load Load Load
balancer balancer. balancer

I

All these actions are associated with non-negligible time P
overhead. The criteria are the predicted workload, eséithat jvocatior
VM performance, target system utilization, and billing tawct 88

periods. In particular, we deploy VM controllers for all 8%

of services to collect statistics required by aforemermtbn Fig. 1. Schematics of services system deployed in a Cloufopta

the criteria. We implement an opportunistic policy within a

VM broker, which coordinates the VM control actions acrossandling several concurrent invocation requests in pelraffe

different services. To evaluate the cost and performange galso assume that the service execution time is not signtfican

of our proposed policy, we built a detailed simulator foinfluenced by the input parameters passed upon service invo-

services hosted in a cloud, driven by service utilizati@tés cation.

collected from real IBM production systems. Our evaluation For each service, there is a corresponding load balancer

results show that the proposed opportunistic replicatimlitp and VM controller that are deployed in the cloud, too. The

achieves significantly lower service provisioning costanth load balancer distributes incoming invocation requestgiéo

workload-oblivious or purely workload-driven policies. replicas of the requested service (i.e., to the currenttivec
The original scientific contribution of this paper is a noveVYMs running a service of the corresponding type) with the

service replication policy, which is specially designed ttewest outstanding requests. We assume that the size of invo

explore the variability of VM performance on cloud platfagm cation requests varies, following an exponential distidy

In contrast to existing replication polices, we optimize titost and thus the execution times of requests follow an expoalenti

and performance not only for a single service but also fdiistribution for a given VM throughput. The VM controller

the entire system, by an augmented set of control actions,nnitors active VMs and keeps tracks of statistics about the

particular replacing and reconfiguring VMs. Our evaluatioimvocation rate, VM performance, and the billing periods of

environment encompasses a large number of different pardhe active VMs. All controllers communicate the statistios

eters, such as different time overheads associated with ettee VM broker, on which the proposed opportunistic policy

control action. The proposed opportunistic replicatiofiggo and the control actions are implemented.

is shown to achieve lower cost and better performance forThe throughput of a VM (i.e., its performance) is not fixed

services hosted in the cloud, compared to replication jgalic but changes over time, due to the possibly heterogeneous

oblivious to the unique characteristics in the cloud. infrastructure used by the cloud operator, hardware op&mi
This paper is organized as follows: The system architectuiens that result in performance fluctuations, performainee

is explained in Section Il. The proposed opportunisticiogpl terference of multiple VMs consolidated on the same physica

tion policy in Section Ill. Section IV contains the experintal machine, and VM migrations. In this paper, we assume that

results. Related studies are summarized in Section V.@ectithe average performance of VMs with the same specification

VI concludes this paper. fluctuates in the discrete range of values. The specific saltie

Il SYSTEM OVERVIEW VM performance can be estimated by observing the completed

' service requests. Each VM is bound to a contract that defines

A. System Architecture and Dynamics the billing period (e.g., one or several hours). That iasing
Figure 1 illustrates the system architecture considered anVM before the end of a billing period would be wasteful

this paper. A service provider deploystypes of services for the service provider who would still have to pay until the

S (1<i<l) in a cloud. The services considered here aend of the period.

simple atomic ones (i.e., we do not focus on composite ) o

services that invoke other services). At any given momefit; VM Replica Provisioning

there aren; > 1 VMs running a service of typ& we also Here, the VM replication provisioning is implemented in

say there ara; replicas of servicé in the cloud. The values slotted windows. The length of the control windows depends

n; may change over time according to the actions taken by the dynamics of the workload and the parameterization

the policy presented in this paper. However, there is alvedysof the service replication policy. We assume that the Igllin

least one replica for each service. period is a multiple of the algorithm’s execution interval.
To limit the scope of this study, we assume that all seln our simulation, we use a billing period of one hour. To

vices are CPU-bound and multi-threaded, that is, capabledyinamically provide VM replicas in a cost-effective manner



the VM broker considers four kinds of control actions: (Intu oo

on a new VM; (2) turn off a VM (i.e., terminating the contract o WMy T .
at the end of a billing period); (3) replace a VM at the end of a ' R g I?’l“,bt‘;_"f'ﬂ m VM broker, |
billing period, if the VM is suspected of not performing well RN R B Vil IR (R g

(4) reconfigure a (previously allocated) VM to run a service

of a different type. The first three actions are requestsrdsva | |

the cloud operator, while the fourth action is transparerihé

cloud operator. T H
There are some time overheads associated with each actioni:, 5 Timing of control acti 4 windows for the VM brak

The turning on of a new VM is assumed to takkeseconds '9- £ TIming of confrol achions and windows for the roxe

tob load atr;d start dtheﬁrequ:jred §erV|cZ: TTe VMs that_ Lfatistics from controllers at seconds before the beginning of
about to be turned off need to immediately stop receivingq control window. The schematics are depicted in Fig. 2.
Invocation requests and complete the_ remaining INVOCaIIORs o jers of services immediately send back their intioce

As for VMs recgnﬁgured fr.om one service to anotherOne,th%te, VM performance, and their billing periods. Using the
no 'Q”Q?r receve invocations of the_ former service and ‘c’_t?:rollected information and algorithms described in the fol-
Serving |qvpcat|ons of the new service right _after (_:omp@u lowing two subsections, the broker computes and broadcasts
the remaining requests and after the reconfl_guranon PEOCEFecision of VM replication and selection to all controllevge

th p tion time tak | ds. Th vt d "Wsume that such a decision process takes a negligible time
€ configuration ime {akes algpseconas. The newly lUmea-, 4 4 time overhead occurs. We choose such a value of

on and reconflgur_ed VMs are pub_hshed as “avr?ulable" VMf’ﬁat there is a sufficient time for turned-on VMs to load the
after the completion of their loading/configuration Pr&ESqarvices, turned-off VMs to complete the remaining service

Note that previous related studies [2], [10], [16], [17] dleninvocation, replaced VMs to complete pending requests and

to qver!ook th_e overhead structure and lead to a Simp"ﬁ(?tg.placement VMs to load the new service, and reconfigured
replication policy. VMs to complete pending requests and load the new service.

I11. OPPORTUNISTICREPLICATION PoLICcY B. Number of Replica VMs

Following the rule of thumb practiced in today’s resource 14 proactively provide a sufficient number of well-utilized
management [2], [20], we provide sufficient VMs to eackyps at the beginning of every control window, the broker
service such that the VMs' aggregate capacities are Wglleqs to know the utilization of active service VMs by the
utilized. A typical target utilization could be around 80%ctimates of the average invocation rates, and the aggregat
[15], for handling temporary workload variation. Here, wesa capacity.
at achieving better performance metrics, €.g., respomse, ti  \yg define the utilization of active servit&/Ms, U;, as the
and maintain target utilization at a lower cost, by levenagi inyocation rate;, divided by the aggregate capacity of active
a pay-as-you-go billing model and the variability in VMS,VMS, i-e-vzni—luij —nig , wherep;j denotes the throughput
performance in the cloud. o _ ~ of VM j for servicei and U denotes the average throughput

We develop an opportunistic replication policy and |mpleper active VMs,
ment it in the VM broker. In contrast to replication policies
private platforms, our proposed policy decides not only on Ui = n_’\i - i (1)
the number of active VMs per service but also intends to Zjlz]_“ij N; L

acquire V_M_S With be_tter performance. The_genera_l idea of ONfote that as there can be multiple threads in a replica VM, the
opportunistic policy is that the VM broker first decides oe th

b ; ‘ h X based he inf _(ferformance of a VM corresponds to the summation of all the
number of VMs for each service, based on the informafi treads. Our objective of VM provisioning is that the effeet

monltored/collep_ted in VM _controllers. _The second stgp Btilization of every service at every window is less than the
to select §pe0|f|p \./MS’ using appropriate _c.ontrol ?Ct'on?arget value Ui(t) < U* Vi t. To that end, we first need to
The selection criteria considered are the billing perid; t ogjimate the average invocation rate and average capacity f

difference in the numper of VMs in adjacent windows, angach coming control window. We propose to use a simple last
the performance of active VMs. Each controller then exexute, | e prediction for the invocation rate

the decisions made by the broker. In the following text, we -
first describe the control timing of the broker, the algarith Ai(t) = Ai(t—1), (2)

to decide on the number of VMs for each service, and finally
the algorithm to select VMs. and for the average throughput,

. n(t-1) t— 1)
A. Control Window and Overhead ;I(T) =uit-1) = 2i-1 i ( 3)
Herein, we consider a control window of fixed length, nit—1)
minutes, indexed by. Due to the time overhead associate&ubstituting the estimated values of Eq. 2 and 3 into Eq. 1,
with each control actions, the VM broker queries the reqlirghe broker estimates the utilization of serviaghen deploying



ni(t) VMs at the beginning of window, is the number of VMs needs to be reduced. the broker first

/\f@) turns off |§(t)| expiring and slowest VMs. Then, the broker

Ui(t) = ——2—. (4) tries to replace remaining expiring VMs by comparing the
i (t) i (t) corresponding cost and benefit. The cost of replacing VMs is

After straightforward algebraic manipulation, the broken- the unavailability of its capacity during the time a replaent
trols ni(t) such thatJ;(t) <U*, as follows, VM is being configured. The potential benefit is the chance of
— obtaining a VM with better performance. We thus derive the

ni(t) = [ /\i(/t)\ 1, Vit (5) guantitative cost of replacing a VNI of servicei as
U pi(t)
Gij = elj. (6)

Once the broker obtains the valuesmft), it proceeds to

decided on which VMs to be turned off, replaced, reconfigy, yhe other hand, we derive the benefit to replace expiring
ured, and how many new VMs to be turned on. VM j of servicei as the expected capacity gain, which sums
C. Turning on-off, Replacing, and Reconfiguring VMs the product of probabilities of throughput levels, the tigh-

The objective of selecting VMs is to maintain as few vmPut differences, and the control window length. Assuming a

as possible and to keep as many fast VMs as possible, stdyl has K different levels of throughput and the probability
that the return on payment for active VMs is maximized! réceiving a VM with throughput levél is F, one can write

Consequently, the broker only turns off the expiring VMs, K
whose billing contracts end, and only turns on new VMs for Bjj ; Pe(Hik — i) T (7
services when there is no spare capacity from other setvices KZ]j

In general, the broker is greedy in maximizing the “benefit” ) ) , .
When the benefit of replacing VNIof servicei is greater than

of individual services, rather than the global welfare df a
services, when it comes to decreasing VMs. The broker aldlf COSt.Bij > Cij, the broker replaces VM by a new VM.

increases VMs in a collaborative manner, as elaboratedein fifot€ that the replacing decision may not necessarily lead to
following. a fast_er VM. _From Eq..6, one can see that probgbilistically
The decision process of the broker is structured into wP€aking, it is beneficial to replace VMs especially when
parts. The first part focuses on the services which need @4Tently expiring VMs are slow and the control window is
reduce VMs, and the second part focuses on services whigR9er:
need to increase VMs, from their current provision. Critica When there is not a sufficient number of expiring VMs
parameters considered are the number of expiring contraé®sPe reduced, i.eEi(t) < |&(t)|, the broker first turns off
Ei(t), the difference in the number of VMs in adjacenEi(t) expiring VMs. Then, among the non-expiring VMs, it
windows, & (t) = ni(t) — ni(t — 1), and the performance of thechooses th¢|& (t)| —Ei(t)} slowest VMs and adds them to the
VMs. Expiring VMs can be either turned off, reconﬁguredeconflguratlon listW. Such a list is first filled up by services
to other services, or replaced by other VMs, whereas nofith 4 (t) <0 in a sequential order of service index, and then
expiring VMs can only be reconfigured. Whex(t) > 0, the flushed out by services witd (t) > 0 in a round robin fashion
servicei demands more VMs at window, whereas when for reasons of fairness. As such, the time overheads assdcia
&(t) < 0, the servicei tries to reduce VMs by turning off with replacing and reconfiguring VMs can be minimized.
or reconfiguring, given the possibility. It implies that nat ~ 2) Increasing VMs:Once the broker completes the process
services can always reduce VMs as the workload decreagésincreasing VMs, it proceeds to the services requiring
shown in Eq. 5, due to the billing periods and no availabrdditional VMs. The broker first tries to distribute any avai
services requiring more VMSs. able VMs on the reconfiguration list, and then turn on new
To facilitate selecting control actions for increasing an¥Ms where required. Let the total number of VMs on the
decreasing VMs, we keep two lists, an expiring list and rgconfiguration list ben¥(t), and total number of additional
reconfiguration list, recording expiring VMs and reconfigVMs from services withd(t) > 0 be A = Jic(5()-0} (1)
urable VMs, respectively. The lists are filled up during th&vhenn®(t) > A, it implies a sufficient number of VMs can
“decreasing” part of the policy and flushed out during thke reconfigured and then distributed to other services. The
“increasing” part of the policy. Both lists are maintaineda broker distributes the slowe&t VMs on the reconfiguration
slowest-first manner. For example, the broker always selelist to services withdi(t) > 0 in a round-robin fashion. Then,
the slowest expiring VMs first onto the expiring list andhe remaining{n¥(t) —A} VMs on the reconfiguration list are
distributes the slowest VMs first to the services wiitt) > 0. returned to their original services. On the other hand, when
1) Decreasing VMsFor services withj(t) < 0, the broker there is not a sufficient number of VMs on the reconfiguration
greedily optimizes the aggregate VM capacity of individudist to meet the requirement for an increasing number of
services by turning off expiring VMs or replacing the slowMs, the broker only distributes™ (t) VMs in a round-robin
expiring VMs with faster ones. fashion and turns on additional VMs according to unfulfilled
When there are more expiring VMs than reduced VMslemands. We summarize the opportunistic replication polic
Ei(t) > |&(t)|,, where| x| denotes the absolute value al%l implemented on the broker in Algorithm 1.



Algorithm 1 Opportunistic Replication Policy on the Brokerin policy Il are synchronized with the broker. The specific

1: Computen;(t) as in Eq.5 ands = ni(t) —ni(t—1), Vi. length of the control window is chosen according to workload
2: for i=1to! services, withd (t) <0 do .. .. . .
3 i E(t) >3] then characteristics and prediction schemes. The discussitimeof
4. Turn off |§] expiring VMs optimality of those values is beyond the scope of this paper.
5: Replace up toEi(t) — |&(t)|} servers based on Eq. 7, and 6.
6: else 3 Cost Calculation
7 RemoveE;(t) expiring VMs . . .
gg dA'(fjd slowest{|5(t)] —Ei} VMs to the reconfiguration listy. We follow the convention in today’s commercial cloud [4]
10: end for and use an hour as the billing period. The actual cost per
5: for roz)?te)rvicesdvzligfﬂ(t)io do billing period is different between cloud providers, andaal

o ifnt(t) > 3 6(t) =Athen : f s ;

13: DistributéA VMs on the reconfiguration list round-robinly varies dependmg OI"I_ the requeSted \_/M spemﬁcaﬁuons. We
}g: | Return remaining{n(t) — A} VMs back to original services present our results in terms of relative cost savings, and
. else . .
16: Distribute n*(t) VMs on the reconfiguration list in round-robin the results are therefore not bound to any cloud prowder In

17: Addd{Ak; n*(t)} servers and distribute to the corresponding services iparticular_

round-robin H H
18: Empty the reconfiguration list The total cost is the summation of all requestgq VM hqurs.
19:  end if When VMs are turned off before the end of billing period,
20: end for they still need to pay for the remaining minutes. We add the

cost for any possibly remaining periods immediately on® th

windows when those VM are turned off.

IV. EVALUATION .
B. The Workloads: Invocation Requests

In this section, we use trace driven simulation to evaluade t Following approaches used in [2], [12], [20], we adopt the

proposed opportunistic replication policy for servicetepss utilization traces from current IBM production systems as

deployed in the cloud. The performance metrics evaluated HNorkload input for each service, i.e., to generate the iatioa

the VM costs, the average normalized throughput of VMs, the  ,o<is Based on the basic utilization law [8], the wtilan

average ut|!|zat|on. of active VMs, and th? average rGSponﬁﬁ%Iti|olied by a normalized constant reflects the reque#, rat
time of an invocation. To show the effectiveness of the V'\‘-,lspecially when the load is below 100% utilization

broker, we also present the detailed statistics of conttel a v ¢oject utilization traces from four large multi-proses

t|on§. We ben(_:hmark our policy against a W_orkload _Obl'v'ouéervers engaging in web services in financial, airline andiane
replication policy and a purely workload driven policy. Oufyj,istries, ‘in late January, 2012. The trace from one server
evaluation results, based on the average of ten simulalies) r js -,nsidered as one service here. The utilization values ar
show that the VM broker can significant reduce the cost By 5yerage computed over 15 minutes. To obtain the request
acquiring a smaller number and faster VMs in a collaboratiyg,o et second, we multiply the utilization values with the
manner, while maintaining the system utilization slightiwer ., essing power of the server, i.e., the number of cores. We
than the target values]” = 80%, and achieving low averagej sirate the rationale by an example: Let the utilizatiaue
response times of invocations. be 35% for a 16 core server. This implies that, on average,
5.6 (035-16) cores are busy. We further assume that a core
is occupied by a single request and such a value corresponds
We built a trace-driven simulator of service-oriented eyst  to the request arrival rate for a small granularity, i.ecosel.
in the cloud using Java. Invocation requests are generated As such, we obtain the request rates for four services, shown
each service, following a Poisson process with time varying Fig. 3. One can clearly see that the workloads are time-
arrival rates. Each VM replica is configured to have one ttreasarying.
independent of service types. Moreover, we assume a VMThe execution times of each service follow the exponential
can have three different performance to process requestsdfribution with mea 11 =1 iz =1 “i =4, “i =1 seconds
each service in our simulated cloud environment. To ease #&pectively. Note that due to the perforr?]ance variability
analysis, we express VM throughput as a multiplier of thef VMs, the execution times can be scaled down by the
minimum throughput of each service ;. The specific values multiplying factor,a, by 1.2 or 15.
area ={1,1.2,1.5}, i.e., a VM has an average throughput of Due to limitations in the granularity in collecting utilitian
Hi, 1.214 and 15y for processing request of servitceThe we are unable to collect the higher moment statistics and fur
probabilities of obtaining VMs with differentr values are ther fit the empirical distribution of utilization. Conseaqtly,
0.5, 0.3, 0.2 respectively. The aforementioned values @nwe assume that the arrivals of the requests follow Poisson
configured according to values measured in different clogdocesses for each 15 minutes and that their means fluctuate
platforms. according to Fig. 3. Once requests are generated, they are
The VM controller collects the required statisties= 20 then immediately forwarded to the corresponding and avigila
seconds before every control window of length- 5 minutes service load balancers.
and the VM broker immediately computes and implements theWe compare the proposed policy against the following
control actions, some of which have time overhead of 20 policies, which are oblivious to the variability of the wdokd,
seconds. For a fair comparison, the timing of control actiometerogeneity of VM throughput, or billing periods:

A. System Configuration
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Fig. 3. Average request rates of servicast).

medium utilization, the lowest response time, and the tighe
normalized VM throughput.
Furthermore, we present average statistics about control
. ; ) -~ actions and the number of VMs provisioned in Fig. I. We
+ Policy 11(0), Ffohcy I1(p): .dynamlcally providing VMs denote al, a2, a31, a32, and a4 as the number of VM, which
for each service, acco_rdmg to_ the workload only. Th'ﬁre turned off, replaced, and reconfigured to another s=syvic
IS a pu_rely workload-driven policy. The ““mb‘?r of VMSreconfigured from another service VM, and turned on, respec-
is decided by Eqg. 5, but pased on thg minimum y'\ﬁvely. The first three actions are associated with "dedneps
throughput only. We provide two versions of F)Ol'CWMs", while the latter two are for "increasing” VMs. One
Il, namely li(a), and H(p). _The former one uses th an see that there is a higher number of reconfiguration and
actual request rgte information and the later one uses {B%er number of replacing occurring for service 2, becadse o
predicted ones in Eq.2. higher oscillation in workloads compared to service 1. Dua t
We also use the actual and predicted invocation rates in thigher variety of control actions taken for service 2, thekier
proposed broker, and denote them broker(a) and brokerighble to obtain VMs with higher throughput, i.e., the agera
in the following. The difference between these two versiontrmalized throughput of service 2 is higher than service 1.
comes from the performance degradation due to the inagcumale conclude that the broker can apply different controloanti
workload prediction. according to different dynamics of workloads, and furthaing
cost savings without sacrificing the performance.

« Policy I: statically providing maximum number of VMs
for each service. This is a workload oblivious policy.

C. Two Services

We first evaluate the VM broker on a system with two sef?- Four Services
vices, namely service 1 and 2 shown in Fig. 3. We summarizeSecondly, we evaluate the VM broker on a system with four
the results in terms of cost saving, average utilizatioryage services, namely service 1-4 shown in Fig. 3. We present the
response time, and average normalized VM throughput dost savings, average utilization, average response ame,
Table |. The cost savings are compared with the cost aferage normalized VM throughput under different policies
policy I, where the provisioning costs are the highest. Thie Table Il. The statistics of the control actions used in the
normalized VM throughput is calculated from the observegtoposed broker are summarized in Fig. 5. Similar to the
VM throughput divided by the minimum throughput for eaclobservations made in previous sections, we can see that the
service. proposed VM broker can achieve significantly higher costing

Clearly, static provisioning of VMs in policy | incurs high savings than other policies, while adhering to the utilat
costs, and results in low utilization of VMs, as well agarget and attaining lower response times. For the services
lower response times. Policy Il saves costs for both sesyicavith less varying workloads, i.e., services 1, 3 and 4, the
compared to the policy I, because of frequently turning VMsroker can gain cost saving by replacing slower VM with
on and off, and being oblivious to the performance varigpili faster VMs, whereas policy Il can only gain marginal cost
of VM throughput. However, policy Il has a much lowersavings, compared to the static provisioning. For service 2
cost saving than the broker, especially for service 1, whoakhough policy Il and the broker can gain good cost savings,
workloads are more stable and the cost savings from dfpe broker still obtains twice as high savings as policy ledu
namic VM provisioning is smaller. In contrast, the brokencato effective replacing and reconfiguration of VMs.
leverage the control knob of "replacing” VM for less varying As the broker applies VM control actions in a collabora-
workloads and acquire faster VMs, which in turn results itive manner, especially through the reconfiguration, aebett
a lower number of VMs provisioned and subsequently lowg@erformance gain can be achieved by the broker in systems
cost. As for the utilization, the broker maintains the atilion with a higher number of services. The overall performance
at roughly 70 %, which is slightly lower than the target value the case of four services is better than in the case of two
of 80 %. Overall, the broker has the highest cost savingservices. One can observe this especially by comparingcserv



TABLE |
PERFORMANCE OF DIFFERENT POLICIESTWO SERVICES

Policy Total S1 S2
CS[%] | CS[%] U[%]. RT[s] AT | CS[%] U[%]. RT[s] AT
| 0 0 55.8 091 1.14 0 494 0.45 1.15
11(0) 14 7 74.6 1.08 1.16] 21 74.9 0.55 1.17
11(p) 14 7 74.1 218 117] 21 73.7 0.55 1.16
Brok.(0) 32 27 68.9 096 1.22] 38 72.7 0.52 1.23
Brok.(p) 31 25 68.0 175 122 37 71.6 0.50 1.23

cs=normalized cost savings, U=utilization,
RT=average response time of invocation, AT=average ndaeththroughput of VMs

1 and 2 in both system scenarios. In particular, the averagilely spread: from a summary of the practical experiences
utilization of VMs for each service increases slightly aredsg [1], to frameworks for automating and easing the migration
closer to the target value (80%). Both services also achigmecess [11], and cost optimization [5], [18]. Chauhan and
higher cost savings in the four services scenario, becaluseBabar [1] report practical experiences of migrating an open
more opportunities to reconfigure VMs to different servicesource software framework, Hackystat, to the cloud. One of
From our evaluation, we believe our proposed policy cahe key findings is that it is easier to migrate software syste
opportunistically acquire a fewer and faster VMs for diffiet consisting of stateless components to laaS clouds.
workloads, and its effectiveness grows with the scale of theVarious service replication strategies are developed and
system, i.e., with a higher number of different services.  evaluated for guaranteeing the reliability [3], [21] or fosf
Discussion We would like to point out a few limitation mance under time-varying workloads [2], [10], [15]-[17p T
of our study. First, this study considers only atomic segsjc deliver highly dependable service systems, Zhen and Lyl [21
and modeling dependencies among services (i.e., compositenpare different combinations of replication strategieséng
services) will be our future work. Second, we adopt preskt vaheir proposed evaluation framework. Their objective is to
ues for modeling the variability of VM performance. We notselect a suitable strategy such that the performance thicesh
that the cost savings and performance metrics presented hard failure threshold are met. Dustdar and Juszczyk [3]
can change depending on those values. We plan to conddeteloped a passive replication strategy on mobile ad-hoc
extensive measurements in a commercial cloud environmeetworks, whose topologies vary over time, and validated it
to confirm that our simulation results can be carried over tmn a simulation prototype. As for workload driven replicati
real systems. strategy, both single-tier [2], [10] and multiple-tier [[1617]
web server systems in a non-cloud platform are well adddesse
Petrucci et al. [15] implement a dynamic service provisigni
Cloud computing is an merging platform for commerciapolicy to optimize power consumption on a heterogeneous
and scientific applications, due to advantages in the paguster. While most provisioning studies monitor the resjue
as-you-go business model and elasticity capacity pravisigate, Singh et al. [16] monitor not only the request rate but
Various studies [6], [7], [9], [13], [19] present perfornwn also the mix of applications.
studies and report their experiences on migration of vari- Motivated by the emerging practice of migrating service
ous applications to commercial cloud platforms. A commosystems to the cloud, we study the opportunistic replicatio
observation is the high variability in the quality of semic strategy, which leverage the pay-as-you-go billing featmd
Kossmann et al. [9] present a comprehensive evaluation lafh system variability in the cloud. Our study is based on
database applications under different cloud architestdreey several observations made in the prior art. In contrast to
conclude that the cost and performance of the services vaxjsting replication policies for private platforms, oupposed
significantly depending on the workload. Jackson et al. [Bfgplication policy is driven by the workload dynamics as lwel
[7] port various scientific applications, such as SNFactoss the performance reliability, and most importantly des
pipeline, to the Amazon EC2 [4]. Their results show thdor the cloud platform. Moreover, we are able to not only
the performance of EC2 is more variable and slower thdandle elastic workload demands of different servicesataat
non-cloud computing platforms, due to the limitation of inmaintain a very satisfactory performance at a lower cost.
terconnects on the EC2. Ueda and Nakatani evaluate a wiki
workload and Apache daytrader using two open-source cloud VI. CONCLUSION
platforms, OpenNebula [14] and Eucalyptus [13]. The two In this paper, we propose an opportunistic replicationqypli
platforms give very different performance results, ergterms specially designed for services deployed in a cloud. The
of VM provisioning, response time, and throughput, comgar@bjective of our work is to leverage the variability in VM
to Amazon EC2 . performance and pay-as-you-go billing contracts in theid]o
Because of the advantages of cloud computing, there is such that the number of VMs for each service is minimized
emerging trend to migrate service-oriented applicationsf and opportunistically provisioned with better performwigls.
existing system to the cloud. The focus of related studies @ur policy is based on comprehensive workload and system

V. RELATED STUDIES



TABLE Il

PERFORMANCE OF UNDER DIFFERENT POLICIESFOUR SERVICES

Policy Total S1 S2 S3 S4
CS[%] | CS[%] U[%] RT AS | CS[%] U[%] RT AS | CS[%] U[%] RT AS | CS[%] U[%] RT AS
| 0.00 0.00 55.8 091 1.14 0.00 49.4 0.45 1.15 0.00 63.8 0.37 1.1 0.00 58.2 1.74 1.17
lI(a) 12.4 7.95 74.6 1.09 1.1 20.2 749 056 1.15 7.18 75.0 044 1.1 133 76.0 198 1.17
11(p) 11.2 5.61 739 237 11 19.7 739 056 1.1§ 7.01 75.1 044 1.1 12.0 76.7 217 1.1§
Brok.(a) 29.7 30.1 716 099 122 3838 732 052 124 19.6 731 042 123 286 74.9 186 1.23
Brok.(p) 29.5 28.4 716 234 120 37.0 71.8 051 123 219 740 042 125 293 75.6 203 1.23
CS=normalized cost saving, U=utilization, RT=averageoese time of invocation, AT=average normalized througlgfuWMs
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Fig. 5. Average number of active VMs per windaw) and average number of VM used in each control action: tufr{adf), replace (a2), reconfigure off

(a31), reconfigure on (a32), turn on (a4).

characteristics, i.e., time variability of workloads, VMan-
ability, invocation variability, and billing periods. Meover,
we consider a complex set of control actions, i.e., turni 9%
on and off, replacing and reconfiguring VMs, with detailed
modeling of the respective overhead. The proposed polity no

h . . [11]
only optimizes the cost of a single service but also the welfa
of all services in a collaborative manner.

Our evaluation results using production traces show thet th?]
proposed policy achieves lower cost and better performance
in terms of VM utilization and response time, compared to
existing replication policies that are oblivious to perfance [13]
and billing characteristics of the cloud.

Regarding ongoing research, we are exploring more com-
plex service-oriented systems including composite semic[ig}
Moreover, we are conducting further evaluations on commér—
cial and research cloud platforms.

(9
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