About me
I joined TU Delft as an Associate Professor in the Fall of 2018, after a decade of industry experience at the IBM Research Zurich Lab.  I am currently leading Distributed Intelligent System Lab  at TU Delft and Generatrix, a startup  for data synthesizing. My research interests lie in the distinct areas of big data systems, (deep) machine learning, cloud dependability, and performance modeling. My research is supported by the Swiss National Science Foundation, the European Union, IBM Research, and TU Delft. 

Hiring. I am recruiting motivated PhD students, visiting scholars and postdocs to work on private machine learning, adversarial learning, fair learning, systems for AI and their applications. Please send me your CV and research interests. 

Over the years, I have worked on resource management problems of various computing systems, such as web services, cloud data centers, and big data processing systems. My recent focus on big data analytics and processing systems leads me to address exciting areas.


  • Privacy-preserving learning systems: how to maximize the discovery capability of (deep) machine learning algorithms while maintaining data privacy with a minimum amount of resources?

  • Robust learning systems: how to make learning algorithms robust against adversaries that maliciously manipulate data input?

  • Federated machine learning systems: how to incentize the participants to contribute and well-behaved on federated learning systems? 

Short CV


Associate editor at TPDS, TDSC, TSC, and TNSM

Technical Program Co-Chairs at IC2E 2021, BDCAT 2021

Technical Program Committee at ATC2021, Sigmetrics 2021, Middlewawre 21, SoCC21, SRDS21

We (Generatrix) enter the semi-final list for European Social Innovation Competition 

Awarded NWO Take-off Grant, Tabular Data Synthesizer, and 4TU  TTT voucher

Accepted paperOnline Label Aggregation: A Variational Bayesian Approach,” WWW21

Accepted paperMASA: Responsive Multi-DNN Inference on the Edge,” IEEE PEROCOM'21

Accepted paperSGD_Tucker: A Novel Stochastic Optimization Strategy for Parallel Sparse Tucker Decomposition,”IEEE Trans. on Parallel and Distributed Systems (TPDS)

Accepted paperAccelerating Gossip-based Deep Learning in Heterogeneous Edge Computing Platforms,”IEEE Trans. on Parallel and Distributed Systems (TPDS)
Accepted paperPipeTune: Pipeline Parallelism of Hyper and System Parameters Tuning for Deep Learning Clusters,” ACM Middleware20

Awards & Honors

Delft Technology Fellowship, 2018

ACM ICAC Best Paper Award nomination 2017

ACM ICAC Best Paper Award nomination 2016

ACM eEnergy Runner-up Best Paper Award 2015

IEEE/ACM CCGrid Runner-up Best Paper Award 2015

IBM Outstanding Scientific Achievement Award 2014

IEEE/IFIP DSN Best Paper Award nomination 2014

IBM All-level Scientific Achievement Award 2012

IEEE HPDC Best Presentation Award nomination 2012

5 IBM invention plateaus



Lydia Y. Chen is an Associate Professor in the Department of Computer Science at the Delft University of Technology in The Netherlands. Prior to joining TU Delft, she was a research staff member at the IBM Research Zurich Lab from 2007 to 2018. She holds a PhD from Pennsylvania State University and a BA from National Taiwan University. Her research interests are distributed machine learning,  dependability management, resource allocation for large-scale data processing systems and services. More specifically, her work focuses on developing stochastic and machine learning models, and applying these techniques to application domains, such as data centers and AI systems. 

She has published more than 100 papers in peer-reviewed journals, including IEEE Transactions on Distributed Systems and IEEE Transactions on Service Computing, and in conference proceedings, including INFOCOM, SIGMETRICS, DSN, and EUROSYS. She was a co-recipient of the best paper awards at CCGrid’15 and eEnergy’15. She received TU Delft technology fellowship in 2018. She was program co-chair for IEEE ICAC 2019, Middleware Industry track 2018, track vice-chair for ICDCS 2018, and DIAS 2017. She has served on the editorial boards of IEEE Transactions on Dependable and Secure Computing, IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions on Service Computing and IEEE Transactions on Network and Service Management. She is a Senior Member of IEEE.